The response of cyclic electron flow around photosystem I to changes in photorespiration and nitrate assimilation.

نویسندگان

  • Berkley J Walker
  • Deserah D Strand
  • David M Kramer
  • Asaph B Cousins
چکیده

Photosynthesis captures light energy to produce ATP and NADPH. These molecules are consumed in the conversion of CO2 to sugar, photorespiration, and NO3(-) assimilation. The production and consumption of ATP and NADPH must be balanced to prevent photoinhibition or photodamage. This balancing may occur via cyclic electron flow around photosystem I (CEF), which increases ATP/NADPH production during photosynthetic electron transport; however, it is not clear under what conditions CEF changes with ATP/NADPH demand. Measurements of chlorophyll fluorescence and dark interval relaxation kinetics were used to determine the contribution of CEF in balancing ATP/NADPH in hydroponically grown Arabidopsis (Arabidopsis thaliana) supplied different forms of nitrogen (nitrate versus ammonium) under changes in atmospheric CO2 and oxygen. Measurements of CEF were made under low and high light and compared with ATP/NADPH demand estimated from CO2 gas exchange. Under low light, contributions of CEF did not shift despite an up to 17% change in modeled ATP/NADPH demand. Under high light, CEF increased under photorespiratory conditions (high oxygen and low CO2), consistent with a primary role in energy balancing. However, nitrogen form had little impact on rates of CEF under high or low light. We conclude that, according to modeled ATP/NADPH demand, CEF responded to energy demand under high light but not low light. These findings suggest that other mechanisms, such as the malate valve and the Mehler reaction, were able to maintain energy balance when electron flow was low but that CEF was required under higher flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variation potential influence on photosynthetic cyclic electron flow in pea

Cyclic electron flow is an important component of the total photosynthetic electron flow and participates in adaptation to the action of stressors. Local leaf stimulation induces electrical signals, including variation potential (VP), which inactivate photosynthesis; however, their influence on cyclic electron flow has not been investigated. The aim of this study was to investigate VP's influen...

متن کامل

Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light

Cyclic electron transport around photosystem I (PS I) was discovered more than a half-century ago and two pathways have been identified in angiosperms. Although substantial progress has been made in understanding the structure of the chloroplast NADH dehydrogenase-like (NDH) complex, which mediates one route of the cyclic electron transport pathways, its physiological function is not well under...

متن کامل

Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I.

Tobacco (Nicotiana tabacum var Petit Havana) ndhB-inactivated mutants (ndhB-) obtained by plastid transformation (E.M. Horvath, S.O. Peter, T. Joët, D. Rumeau, L. Cournac, G.V. Horvath, T.A. Kavanagh, C. Schäfer, G. Peltier, P. MedgyesyHorvath [2000] Plant Physiol 123: 1337-1350) were used to study the role of the NADH-dehydrogenase complex (NDH) during photosynthesis and particularly the invol...

متن کامل

Cyclic electron flow around photosystem I in C(3) plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex.

Cyclic electron flow around photosystem (PS) I has been widely described in vitro in chloroplasts or thylakoids isolated from C(3) plant leaves, but its occurrence in vivo is still a matter of debate. Photoacoustic spectroscopy and kinetic spectrophotometry were used to analyze cyclic PS I activity in tobacco (Nicotiana tabacum cv Petit Havana) leaf discs illuminated with far-red light. Only a ...

متن کامل

Cyclic Electron Flow Around Photosystem II as Examined by Photosynthetic Oxygen Evolution Induced by Short Light Flashes

W. I. Gruszecki3 K. Strzałkab, A. Radunzc and G. H. Schmidc a Department o f Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland h Department o f Plant Physiology and Biochemistry, Jan Zurzycki Institute of Molecular Biology, Jagiellonian University, 31-120 Krakow, Poland c Fakultät für Biologie, Lehrstuhl Zellphysiologie, Universität Bielefeld. Postfach 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 165 1  شماره 

صفحات  -

تاریخ انتشار 2014